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Abstract

We propose a novel automatic salient object segmentation algorithm which integrates
both bottom-up salient stimuli and object-level shape prior, i.e., a salient object has a
well-defined closed boundary. Our approach is formalized as iterative energy minimiza-
tion framework, leading to binary segmentation of the salient object. Such energy min-
imization is initialized with saliency map which is computed through context analysis
based on multi-scale superpixels. Object-level shape prior is then extracted combining
saliency with object boundary information. Both saliency map and shape prior will be
updated after each iteration. Experimental results on two public benchmark datasets
show that our proposed approach outperforms state-of-the-art methods.

1 Introduction
Human beings own the ability to accurately and rapidly find out the interested object (re-
gion), which is called focus of attention or saliency in a scene. When attention deployment
is driven by salient stimuli, it is considered to be rapid, bottom-up, and memory-free. Atten-
tion can also be guided by relatively slow, top-down, memory-dependent mechanisms [13].
For instance, when we look at people’s faces, those which you are familiar with may draw
your attention. Applications for salient object detection include picture collage [27], image
retargeting [3], image and video compression [29], and object recognition [23].

Recently many computational models have been proposed for saliency detection. Itti
et al. [13] computed saliency value for each pixel, i.e., saliency map, based on color and
orientation information using “center-surround” operations akin to visual receptive fields.
Liu et al. [18] proposed several saliency features and integrated them into CRF framework to
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Figure 1: Overview of our proposed salient object segmentation algorithm. Given input
images (left), local context analysis can output full-resolution saliency map (middle left,
section 2.2). We then extract shape prior (middle right, section 2.3) based on saliency map.
Iterative energy minimization based on saliency map and shape prior is employed, leading
to accurate binary segmentation of input images (right, section 3).

separate salient object from background. Hou and Zhang [12] and Achanta et al. [1] defined
saliency in the frequency domain. Goferman et al. [11] proposed one kind of saliency which
incorporates context information into final saliency map. Recent work of Cheng et al. [7]
computed saliency map based on regions to ease computational burden.

Of all these works, the most related to ours is [7], since we also compute saliency based
on regions for efficiency. Our proposed saliency feature, however, defines a region’s saliency
w.r.t. its context, i.e., neighbors, instead of all regions in the image, and we incorporate loca-
tion prior into saliency computation. We also extend our single-superpixel-scale to multiple
scales to make our algorithm more robust under complicated circumstances. Finally, we
propagate saliency from regions to pixels to get saliency map. See examples in Fig. 2, where
our method can uniformly highlight the salient object even in cluttered background.

Our work differs from the previous works mentioned above mostly because we incor-
porated the generic knowledge of object into salient object segmentation. Recent years,
several kinds of object-level prior have been studied. Vicente et al. [26] proposed connec-
tivity prior, which assumes that parts of the object are connected together. And Veksler [25]
presented the star prior with the assumption that the center of an object is known. Alexe et
al. [2] proposed a generic objectness measure by combining several image cues to quantify
the possibility for an image window to contain an object of any categories. Inspired by [2],
we impose the object-level prior, that the object has a well-defined closed boundary, on our
salient object segmentation algorithm. But unlike [2], which defines the closure on a rectan-
gle, we straightly search for such a closed contour. Our computed salient contour combines
saliency with boundary information, defined as a ratio form suggested by Stahl and Song
in [24] which can be efficiently optimized by using the ratio contour algorithm proposed
by Song et al. [28]. Object-level shape prior can then be extracted based on such optimal
contour. See sample images of shape prior in Fig.1.

Computed optimal contour is actually a polygon (see section 2.3 for details). Since we
prefer pixel-wise segmentation, we choose to integrate shape prior into energy minimization
framework as a constraint instead of directly outputting it like [30]. Energy minimization
has been greatly adopted in image segmentation [5, 16, 22]. Initial saliency and shape prior
are only rough estimation of the salient object, thus we re-estimate both of them after each
iteration and re-segment the image. Unlike [22], which only updates appearance model
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in iterative energy minimization, both of our appearance and shape model evolve in our
framework.

We have evaluated our proposed algorithm on two publicly available datasets provided
by Achanta et al. [1] and Liu et al. [18], respectively. And we compared our approach with
other state-of-the-art methods [1, 7, 11, 12, 13]. Experimental results show that we can
achieve better performance on both datasets.

This paper is organized as follows. Section 2 introduces context-based saliency and
object-level shape prior computation based on three characteristics of a salient object. Sec-
tion 3 describes the iterative energy minimization framework. We show experimental results
in Section 4 to demonstrate the effectiveness of our proposed approach. Sections 5 concludes
the paper.

2 Salient Object Features
In this section, we first introduce three characteristics of the salient object. According to
these characteristics, we compute saliency map and object-level shape prior. Compared with
previous works [1, 7, 12, 13, 18], which only take bottom-up salient stimuli into consid-
eration, our approach incorporates object-level shape information to better define a salient
object.

2.1 Three Characteristics of a Salient Object
Based on observation, we introduce three characteristics to define a salient object:

1. The salient object is always different from its intermediate context.
2. The salient object in an image is most probably placed near the center of the image.
3. A salient object has a well-defined closed boundary.

The first characteristic, based on bottom-up salient stimuli, has been extensively studied
in previous works [11, 12, 13, 18]. The second one as a location prior, has been studied in
photo quality assessment [4, 8, 20], known as Rule of Thirds. The rule indicates that to attract
people’s attention, the object of interest, or main element in a photograph should lie at one
of the four intersections to approximate the “golden ratio” (about 0.618). And the last one
is satisfied by all categories of objects, as a generic knowledge of an object proposed in [2].
Such a constraint will be incorporated into the energy minimization framework (Section 3)
to improve the performance of our proposed salient object segmentation.

2.2 Context-based Saliency Computation
In this section, we introduce context-based saliency computation according to characteris-
tics 1 and 2 of the salient object.

Our saliency is defined based on the superpixels, which are generated by fragmenting
the image [9]. One benefit to define saliency upon region is related to efficiency [7]. The
previous works [11, 18] resize the original image to a smaller size in order to ease the heavy
computational burden. Since the number of superpixels in an image is far smaller than the
number of pixels, computing saliency at region level can significantly reduce the computa-
tion. We thus can produce full-resolution saliency map.
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: Visual comparison of saliency maps. (a) input image, (b) saliency maps using the
method of Itti [13], (c) Hou and Zhang [12], (d) Achanta et al. [1], (e) Goferman et al. [11],
(f) Cheng et al. [7], and (g) our method. Our method generates full-resolution saliency maps,
in which the salient objects are uniformly highlighted.

Without knowledge of the size of the salient object, previous works [2, 11, 13, 17, 18]
employed Gaussian pyramid, a common multi-scale approach for saliency detection. Follow-
ing the intrinsic idea but we adopt a different method to detect a salient object on multiple
superpixel scales, which is obtained by fragmenting the image with N groups of different
parameters.

According to characteristic 1, a region (superpixel) is salient if it is distinguished from
its immediate context, defined as a set of spatial neighbors in our scenario. Specifically, at
superpixel scale n we first fragment input image I into regions {r(n)i }

R(n)
i=1 . Given region r(n)i ,

and its spatial neighbors {r(n)k }
K(n)
k=1 , the saliency of r(n)i is defined as:

S(r(n)i ) =−w(n)
i log

(
1−

K(n)

∑
k=1

α
(n)
ik dcolor(r

(n)
i ,r(n)k )

)
, (1)

where α
(n)
ik is the ratio between the area of r(n)k and total area of the neighbors of r(n)i .

dcolor(r
(n)
i ,r(n)k ) is the color distance between regions r(n)i and r(n)k , computed as χ2 dis-

tance between the CIE L*a*b* and hue histograms of two regions. According to charac-
teristic 2, we introduce the Gaussian falloff weight, defined as w(n)

i = exp(−9(dx(n)i )2/w2−
9(dy(n)i )2/h2), where w,h are the width and height of the image respectively, and (dx(n)i ,dy(n)i )

are the average spatial distance of all pixels in r(n)i to image center.
Finally, we propagate saliency value from multiple regions to pixels. Saliency of pixel p

is defined as:

Sm(p) =
∑

N
n=1 ∑

R(n)
i=1 S(r(n)i )

(
||Ip− c(n)i ||+ ε

)−1
δ

(
p ∈ r(n)i

)
∑

N
n=1 ∑

R(n)
i=1

(
||Ip− c(n)i ||+ ε

)−1
δ

(
p ∈ r(n)i

) , (2)

where i is the index of region, n is the index of superpixel scale, ε is a small constant (0.1 in
our implementation), c(n)i is the color center of region r(n)i , ||Ip− c(n)i || is the color distance
from the pixel p to the color center of r(n)i , and δ (·) is the indicator function.

Another reason why we detect the salient object in multiple scales is related to the scale of
context. In [18], the center-surround color histogram feature is computed by comparing the
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(a) (b) (c) (d) (e) (f)

Figure 3: An illustration of shape prior extraction. (a) input image, (b) saliency map, (c)
detected line segments using Pb edge detector [21], (d) detected optimal contour, where red
line means detected segments and green lines are gap-filling segments, and (e) extracted
shape prior according to Eqn. 4, (f) binary segmentation result.

candidate salient region’s appearance with its context, where the scale of context is assumed
to be the same as the object. And in [2], the scale of context for all images is fixed and learned
from training data. Here we propose detecting the salient object with respect to multiple
scales of the context. Extension to multiple scales will make our saliency computation more
robust in a complicated environment and thus achieve better performance. Code of our
saliency map computation is available at https://sites.google.com/site/jianghz88/.

2.3 Shape Prior Extraction
In this section, we show how to extract shape prior, i.e., a salient closed contour, which
combines saliency with boundary information. Our goal is to extract a closed contour C,
which covers the salient object. Specifically, as shown in Fig. 3, we first construct an edge
map E. The edge map consists of a set of line segments as illustrated in Fig. 3(c), which
are obtained from an edge detector, followed by a line fitting step. We refer to straight line
segments as detected segments. Note that a detected segment may come from the boundary
of the salient object, or the noise and texture of the object and background.

Our shape prior extraction can then be formalized to find an optimal closed contour C∗ by
identifying a subset of detected segments in E and connecting them together. Since the de-
tected segments are disjoint, we construct additional line segments that fill the gaps between
detected segments to form closed contours. We refer to these as gap-filling segments. With-
out knowing which gaps are along the resulting optimal contour, we construct a gap-filling
segment between each possible pair of the endpoints of the different detected segments. In
this way, a closed contour is defined as a cycle that traverses a set of detected and gap-filling
segments alternately, as shown in Fig. 3(d). The optimal closed contour C∗ can be defined
as:

C∗ = argmin
C

|CG|
∑p∈C Sm(p)

, (3)

where |CG| is the total length of gaps along the contour C, and ∑p∈C Sm(p) is the total saliency
value of pixels located inside C. Ratio contour algorithm [28] can be employed to find such
an optimal cycle in polynomial time.

Finally, the shape prior Sp is defined as

Sp(p) = 1− exp(1− γd(p)) , (4)

where d(p) is the spatial distance between pixel p and optimal closed contour C∗, computed
by using a distance transform [10], as shown in Fig. 3(e). And γ is the confidence of the
shape prior, set to 1 in our implementation. Note that computed optimal contour is actually
a polygon. Since we prefer pixel-wise segmentation, unlike [30] which straightly outputs
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(a) (b) (c) (d) (e)

Figure 4: More examples of shape prior extraction. (a) input image, (b) re-estimated saliency
map (see section 3.2 for details), (c) all detected contours with different color (red, green,
blue in 3 iterations respectively), (d) merged optimal contour (see text for details), and (e)
extracted shape prior.

the optimal contour, we choose to integrate shape prior into the energy minimization frame-
work for binary salient object segmentation (section 3). See sample images in Fig. 3, the
segmented mask has more accurate and smooth boundary than the optimal contour.

An object may consist of several parts and each can be represented by a closed boundary.
For instance, the apple shown in the first row of Fig. 4(a) consists of an apple and its leaf, both
of which can be represented by a closed boundary as shown in Fig. 4(c). In addition, there
may be several objects in one image, as shown in the second row of Fig. 4(a). Therefore, we
search for nc (set to 3 in our implementation) contours. After getting one optimal contour, we
simply set the saliency value inside it to zero instead of removing corresponding segments
like [30]. Then we re-run the ratio contour algorithm. Contours which have self-intersection
and whose average saliency value is smaller than Ts (set to 0.65 in our implementation) are
rejected. And two contours will be merged if they the share same segments or if one is
inside another one. For example, in the first row of Fig. 4, both the apple and its leaf can be
successfully detected in the first two iterations (shown in red and green color, respectively),
and a noisy contour is also extracted in the last iteration (shown in blue color). The last
extracted noisy contour is rejected since its average saliency value is lower than Ts. By
detecting multiple contours we can more accurately identify the salient object.

3 Salient Object Segmentation Framework
Our salient object segmentation framework combines bottom-up saliency information with
object-level shape prior. Based on the initial rough estimation, segmentation can be solved by
energy minimization. More accurate saliency map and shape prior can then be re-estimated
from the new segmentation.

3.1 Energy Model for Salient Object Segmentation
Given input image I, saliency map Sm (section 2.2), and shape prior Sp (section 2.3), our goal
is to find the label set L, where lp ∈ {0,1} for each pixel p, 0 for background and 1 for salient
object (foreground). Salient object segmentation can be formalized as energy minimization:

E(L) = ∑
p∈P

U(p, lp,Sm)+λ ∑
(p,q)∈N

δ (lp 6= lq)V (p,q, I,Sp), (5)
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where P is the set of image pixels and N is a 4-connected neighbor system. The data term
U is defined as

U(p, lp,Sm) =

{
Sm(p), lp = 0
1−Sm(p), lp = 1 . (6)

The smoothness term can be written as

V (p,q, I,Sp) = αVa(p,q, I)+(1−α)Vs(p,q,Sp), (7)

where α (set to 0.5 in our implementation) controls the relative importance of two parts.

Va(p,q, I) is defined as the traditional smoothness term [18, 22]: Va(p,q, I)= exp
(
− ||Ip−Iq||2

2β

)
,

where β =E
(
||Ip− Iq||2

)
as in [22]. Vs(p,q,Sp) can be derived from the shape prior, defined

as:

Vs(p,q,Sp) = Sp(
p+q

2
)≈

Sp(p)+Sp(q)
2

. (8)

Intuitively, this term encourages the segmentation boundary to be aligned with computed
closed contour. According to [14], such energy can be efficiently minimized by using the
min-cut/max-flow algorithms proposed in [6], leading to a binary segmentation of the image.

3.2 Iterative Energy Minimization

The initial saliency map and shape prior are only rough estimation of the salient object. After
binary segmentation, both of them can be re-estimated more accurately. Unlike previous
work [7], our iterative energy minimization framework updates both appearance and shape
models.

Specifically, we construct CIE L*a*b* and HSV histograms HF ,HB for salient object
(foreground) and background, based on current segmentation, respectively. To make reliable
estimation, we dilate the mask of current segmentation to get a trimap. Region outside dilated
region is set as background, and inside region will be set as salient object (foreground). Then
the updated saliency map can be defined as

Sm(p) =
HF(bp)

HF(bp)+HB(bp)
, (9)

where bp is the color histogram bin of pixel p. The less overlap between appearance of
foreground and background, the more accurate the updated saliency map is. Based on such a
new saliency map, we can update the shape prior, then re-segment the image. We run iterative
energy minimization until convergence (at the most 4 iterations in our implementation). The
algorithm of our iterative segmentation is summarized below:

Algorithm 1 L=SalientObjectSegmentation(I)
1: Calculate saliency map Sm according to Eqn. 2.
2: Extract shape prior Sp based on Sm according to Eqn.4.
3: Segment image through energy minimization according to Eqn. 5.
4: Update saliency map Sm based on current segmentation L according to Eqn. 9.
5: Go to step 2 to update shape prior Sp, and then re-segment image until convergence.
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Figure 5: Quantitative comparison of different methods on the dataset [1, 18]. See the text
for detailed explanation.

4 Experimental Results
We perform experiments on two datasets. The first one is provided by Achanta et al. in [1]
which contains 1000 images, along with ground truth for each image in the form of accurate
human-labeled masks for salient object. And the second one is the MSRA dataset B provided
by Liu et al. in [18], which contains 5000 images, along with bounding box annotation of
salient object for each image. The first dataset is a subset of the second one but with more
accurate annotation. Nine user annotations for each image in the second dataset are provided,
however, making it more objective for comparison.

To smooth the computed superpixels, we first merge those neighbouring regions whose
dcolor is less than 0.2. To construct the edge map, we use the Pb edge detector [21], and the
line approximation package provided by Kovesi [15]. We remove all edges with length less
than 10 pixels, and set the allowed maximum deviation between an edge and its fitted line
segment to 2 pixels.

Our proposed approach is compared with five state-of-the-art saliency detection meth-
ods, including IT [13], SR [12], FT [1], CA [11] and RC [7]. IT is a classical approach
that leverages a neuromorphic model simulating which elements are likely to attract visual
attention. SR and FT work in frequency domain to find the anomalies of an image. CA is a
recently proposed method which integrates context information into the final saliency map.
And RC is the approach most related to ours, which computes saliency based on a region’s
global contrast w.r.t. all other regions in an image on a single superpixel scale.

Two experiments are conducted to comprehensively evaluate the performance of our
approach to salient object segmentation. In the first experiment, we compare saliency maps
produced with different methods since saliency map may be used in many applications, e.g.,
picture collage [27], image retargeting [3]. In the second experiment, we compare the salient
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6: Visual comparison of salient object segmentation using different methods. (b)-(f)
are the results of IT [13], SR [12], FT [1], CA [11] and RC [7] respectively. (g) is result of
CB, which considers our context based saliency map. And (h) is result of CBS, our proposed
approach, which combines context based saliency and object-level shape prior.

object segmentation results of different methods. And we provide comparisons to show the
effectiveness of our object-level shape prior.

On the dataset of [1], we computed precision, recall, Fα with α = 0.5, to quantitatively
evaluate the performance. On the MSRA dataset B, to output a rectangle for evaluation,
we exhaustively search for a smallest rectangle containing at least 95% foreground pixels in
the binary segmentation as [19]. In addition to precision, recall and Fα , we provide BDE
(Bounding box Displacement Error) for bounding box comparison.

4.1 Comparison of Saliency Maps

To compare saliency map, with saliency value in the range [0, 255], we threshold the saliency
map at each Tf within [0, 255]. Tf is varied from 0 to 255, and precision and recall are
computed at each value of Tf .

We compare our context-based (CB) saliency map with state-of-the-art methods. In addi-
tion, to show the effectiveness of our proposed multi-superpixel-scale saliency enhancement,
we provide comparisons of our saliency map with different scales (N in Eqn.2). Recall-
precision curves are shown in Fig. 5(a). As it shows, we can achieve great improvement
from 1-scale to 4-scale enhancement. And the gap between 4-scale and 8-scale is smaller.
We therefore choose N = 8 in our next experiment. Our 4-scale and 8-scale saliency maps
consistently outperform other five state-of-the-art methods. Visual comparison of salient
maps is provided in Fig. 2. As we can see, our method can generate better saliency maps.
For example, in the last row, our method uniformly highlights the salient object even in
cluttered background.

4.2 Comparison of Salient Object Segmentation

In this section we will compare salient object segmentation performance of different meth-
ods. As IT, SR, FT and CA evaluate only saliency maps, we use their saliency maps to
initialize our iterative segmentation algorithm to make an objective comparison. And for RC
we directly report their best result on the same dataset. In addition, we also present the seg-
mentation result by using our saliency map but without shape prior (α is set to 1 in Eqn. 7)
to demonstrate the effectiveness of object-level shape prior.

As we can see in Fig. 5(b)(c)(d), our approach integrating context-based saliency and
shape prior (CBS) consistently outperforms IT, SR, FT, CA on both datasets. And we can
achieve as good result as RC on the first dataset. But we can achieve slightly better per-
formance on the second larger dataset. To achieve binary segmentation, RC first thresholds
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the saliency map, and then iteratively apply GrabCut [22]. It is difficult to select the initial
threshold, however. As we can see, the selected threshold, which gives 95% recall rate in the
first saliency map comparison experiment, works quite well on the first dataset. While on a
larger dataset, this threshold proves to work poorly. Our method is straightly initialized with
saliency map, therefore performs better on the larger dataset.

In addition, we present the segmentation result of CB, which only takes context-based
saliency into consideration, to demonstrate the effectiveness of the object-level shape prior.
As can be seen, by incorporating shape prior, we can achieve slightly better segmentation
precision and Fα on both datasets.

We also provide visual comparisons of salient object segmentation in Fig. 6. In the image
of the first row, the segmentation can easily be affected by the leaves, since both flower and
leaves are all quite different from background. By incorporating shape prior, however, we
can get satisfying segmentation results. And in the second row, the background is cluttered
and the salient object consists of several colors. In such a challenging case, IT and FT
completely fail, and SR, CA and RC can only find part of the object. Result of CB contains
part of the background. And our proposed approach, CBS, successfully segments the salient
object.

5 Conclusion

In this paper, we propose context-based saliency and object-level shape prior computation
according to the three characteristics of a salient object. Saliency map is computed based
on multi-scale superpixels, which proves to significantly enhance saliency, through context
analysis. And object-level shape prior is extracted combining saliency with object boundary
information. We then integrate both of them into an iterative energy minimization frame-
work, leading to binary segmentation of the salient object, where shape prior encourages
segmentation boundary to be aligned with salient contour. The major difference between our
approach and previous works is that we take such an object-level prior into consideration to
better define a salient object. Experimental results on two benchmark datasets show that our
approach can outperform state-of-the-art methods.
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